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Abstract
We propose a scheme to experimentally observe matter-wave interference
in the time domain, specifically in the arrival time or time-of-flight (TOF)
distribution for an atomic Bose–Einstein condensate (BEC) Schrödinger-cat
state represented by superposition of macroscopically separated wave packets
in space. This is in contrast to interference in space at a fixed time observed
in the reported BEC experiments. We predict and quantify the quantum
interference in the TOF distribution calculated from the modulus of the quantum
probability current density (rather than the TOF distributions obtained from a
purely classical or semi-classical treatment in many reported experiments). The
interference and hence the coherence in the quantum TOF signal disappears
in the large-mass limit. Our scheme has the potential to probe the validity of
various other theoretical approaches (Muga and Leavens 2000 Phys. Rep. 338
353) of calculating the quantum arrival time distribution.

PACS numbers: 03.65.Xp, 03.75.−b, 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent times, laser cooling and trapping of atoms has become an area of active research [1].
The temperature of the cold atomic sample is one of its most important characteristics and
several methods have been proposed and used for its determination. A well-known technique
of measuring this temperature is the time-of-flight (TOF) method [2]. It is significant to
mention that the first evidence for a Bose–Einstein condensate (BEC) emerged from TOF
measurements [3]. Most of the samples of cold atoms are initially prepared in magneto-optical
traps and the atomic cloud is allowed for a thermal expansion after its release from the trap.
These so-called TOF measurements are performed either by acquiring the absorption signal
of the probe laser beam through the falling and expanding atomic cloud or by measuring the
fluorescence of the atoms excited by the resonant probe light. Most of the theoretical analyses
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Figure 1. Classical TOF distribution D(t) given by equation (3) is plotted for BEC of sodium
atoms at a temperature T = 1 μK. The detector is located at a distance z = H = −1 cm and
σ0 = 1 μm.

of TOF measurements are as follows. To find the shape of the absorption TOF signal, one
assumes to start with the initial Gaussian position and velocity distributions of atoms in the
trapped sample. The initial probability distribution of finding an atom in the phase space
volume element with coordinates (z0, v0) is given by

D(z0, v0) dz0 dv0 = 1(
2πσ 2

0

)1/2 exp

(
− z2

0

2σ 2
0

)
1(

2πσ 2
v

)1/2 exp

(
− v2

0

2σ 2
v

)
dz0 dv0. (1)

Here for simplicity, we consider the one-dimensional case. The Gaussian width σv of
the velocity distribution is associated with the temperature T of the cloud by the relation
σ 2

v = kT /m, where m stands for the atomic mass and k is the Boltzmann constant. Using
Newton’s equations for ballistic motion of a particle accelerated by the earth’s gravitational
field (in the vertical z-direction), the velocity is obtained in terms of the TOF as

v0 =
(

z − z0 +
1

2
gt2

)/
t,

∂v0

∂t
=

(
z0 + 1

2gt2 − z
)

t2
. (2)

Substituting the above expression for v0 from equation (2) in equation (1), and then finally
integrating over z0, one can obtain the TOF distribution at an arbitrary distance z = H , given
by

D(t) dt = 1

(2πt2)1/2

(
1
2gt2

(
2σ 2

0 + σ 2
v t2

) − Hσ 2
v t2

)(
σ 2

0 + σ 2
v t2

)3/2 exp

(
−

(
H + 1

2gt2
)2

2
(
σ 2

0 + σ 2
v t2

))
dt. (3)

Figure 1 shows a typical TOF or arrival time distribution for cold sodium atoms. These kinds of
purely classical analyses are adopted in most of the discussions on TOF measurements where
the arrival time of atomic or sub-atomic particles is treated as an elementary well-defined,
unique and classical quantity. Also, the theoretical treatments of the TOF distribution that
can be obtained using, for instance, Green’s function method [4] or any semi-classical method
[5], however, are equivalent to the TOF distribution obtained by using Newton’s equations
for ballistic motion of particles [2]. The interpretations or theoretical analyses of the results
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of the various TOF experiments [6–8] with molecular, atomic or sub-atomic particles where
classical trajectories are inferred from Newtonian mechanics remain debatable, especially in
the domain of small atomic masses and low temperatures where quantum mechanical effects
should be significant and quantum TOF distribution cannot be reproduced with classical or
semi-classical analyses.

Here we provide an example in the context of BEC matter-wave interference, where
a quantum analysis for TOF is necessary. We propose a scheme for measuring the TOF
distribution of a freely falling atomic BEC prepared in non-classical Schrödinger-cat states.
The interference in the TOF distribution (or signal) can then be observed by taking a note
or record of the particle counts over various tiny time windows at a fixed detector location.
This is different from the interference between two freely expanding BECs observed [9] in
space after a definite time of free fall of the condensates. Coherent splitting of BEC atoms
with optically induced Bragg diffraction has been done experimentally [10, 11]. The spatial
coherence of a BEC is measured using the interference technique by creating and recombining
two spatially displaced, coherently diffracted copies of an original BEC [11].

As mentioned above, most of the experiments (particularly when matter waves are
associated with center-of-mass motion or external motion of massive quantum particles)
demonstrate matter-wave interference by showing the intensity variation at an extended region
of detection space at a fixed time. In the present paper, in contrast, we predict and quantify the
matter-wave interference in the center-of-mass motion by calculating the time distribution of
matter-wave arrival probability at some fixed spatial point. More specifically, we discuss here
the BEC matter-wave interference in the TOF distribution or arrival time distribution since
BEC as a source of coherent matter waves is already routinely demonstrated and thus may be an
ideal candidate to show an interference signal in the time domain (arrival time distribution). We
use here a particular quantum approach to calculate the TOF distribution, and in our analysis
we do not use at any point classical or semi-classical ingredients. We consider the free fall of
matter wave associated with quantum particles represented by an initial Schrödinger-cat state
which is the linear superposition of two mesoscopically distinguishable Gaussian wave packets
peaked around different heights, namely, z = 0 and z = −d, along the vertical z-axis. Then
after a certain height of free fall (evolution under the potential V = mgz) of the Schrödinger
cat, we calculate the quantum TOF distribution at a given detector location z = H . During
the free fall, the distinct superposed wave packets of the Schrödinger cat overlap or interfere
in space, so it is natural to expect that they will also interfere in the time of fall showing an
interference pattern in the quantum TOF distribution.

We take this particular example of matter-wave interference in the discussion of quantum
TOF distribution to pinpoint the necessity of a quantum analysis. So the need for a quantum
analysis of TOF distribution is not merely a conceptual issue but a practical one, asking how
to predict the TOF distribution using only classical and semi-classical ingredients in a purely
quantum scenario like this (interference in the TOF distribution for quantum particles). Now,
in spite of the emphasis of quantum theory on the observable concept, there is no commonly
accepted recipe to incorporate time observables and their probability distributions in the
quantum formalism, and there is considerable difficulty and debate over the issue of defining
time (for example, tunneling time, decay time and arrival time) as an observable [12–25].
Even for the simplest case of the arrival time problem there is no unique way to calculate the
probability distribution in the quantum formalism [17]. Despite this, many researchers have
evidently not been discouraged from seeking an expression for the arrival time distribution (or
the quantum TOF distribution) within a consistent theoretical framework. Several logically
consistent schemes for the treatment of the arrival time distribution have been formulated,
such as those based on axiomatic approaches [14], operator constructions [15], measurement-
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based approaches [16, 19], trajectory models [21] and the probability current density approach
[17–25]. We will use here the probability current density approach to calculate the quantum
TOF distribution which is logically consistent and also physically motivating.

The main purpose of our paper is twofold. First, our proposal to experimentally observe
or quantitatively predict the matter-wave interference in the time domain, specifically in the
TOF distribution is itself quite significant which has not been explored in the current literature
to the best of our knowledge. BEC as a source of coherent matter waves is already routinely
demonstrated in spatial interference experiments, so BEC will also be an ideal candidate to
show the interference in the TOF distribution. Second, we have just mentioned that there is
an inherent nonuniqueness within the formalism of quantum mechanics for calculating the
TOF or arrival time distribution. It remains an open question as to what extent these different
quantum mechanical approaches [12–25] for calculating the time distributions can be tested
or empirically discriminated. Our proposal of measuring matter-wave interference in TOF
distribution has the potential to empirically resolve ambiguities inherent in the theoretical
formulations of the quantum TOF distribution. In this respect, it would be interesting if the
prediction of BEC matter-wave interference in the TOF distribution (calculated from different
quantum approaches) be verified in actual experiments.

2. Interference in the quantum time-of-flight distribution for the Bose–Einstein
condensate

We begin our analysis with the standard description of the flow of probability in quantum
mechanics, which is governed by the continuity equation derived from the Schrödinger
equation given by

∂

∂t
|�(x, t)|2 + ∇ · J(x, t) = 0. (4)

The quantity J(x, t) = ih̄
2m

(�∇�∗ − �∗∇�) defined as the probability current density
corresponds to this flow of probability. In one dimension, the current density J (x, t) tells us
the rate at which probability is flowing past the point x. So, interpreting the one-dimensional
continuity equation in terms of the flow of physical probability, the Born interpretation for
the squared modulus of the wavefunction and its time derivative suggest that the arrival
time distribution of the particles reaching a detector located at x = X can be calculated
[17–25] using the probability current density J (x, t). It should also be noted that J (x, t)

can be negative; hence, one needs to take the modulus sign in order to use the above
definition. Our aim here is to derive an expression for the TOF distribution through the quantum
probability current density for the atomic BEC representing the mesoscopic Schrödinger cat
and showing interference in the TOF signal. The probability current density approach to the
TOF distribution is also justified by the Bohmian model of quantum mechanics in terms of the
causal trajectories of individual particles [21]. Although the Schrödinger probability current
density is formally nonunique up to a total divergence term [20], the current can be uniquely
fixed if one calculates the current in the non-relativistic limit of a proper relativistic wave
equation which provides appropriate spin-dependent corrections to it [23, 26]. We ignore this
small spin-dependent contribution here in our present discussion, as the estimated magnitude
of the spin-dependent current is roughly 105 to 106 times smaller than the Schrödinger
current. It was emphasized that the probability current density approach not only provides
an unambiguous definition of the arrival time at the quantum mechanical level [17–25], but
also addresses the issue of obtaining the proper classical limit of the TOF of massive quantum
particles [24, 25].
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Now, to keep the discussion concise, here we restrict ourselves to the case of a one-
dimensional motion, but our resulting conclusion does not depend on a three-dimensional
extension which will be straightforward as discussed later at the end of this section. A
magnetically trapped BEC as a source of coherent matter wave or atom laser, where a
macroscopic number of atoms occupy the same ground state is now routinely available.
After being released from the trapped Bose–Einstein condensates, matter waves fall freely due
to the gravity. If the atomic beam is well collimated, we can use a one-dimensional Gross–
Pitaevskii equation [3, 27] for the evolution of the condensate wavefunction �(z, t) with the
gravitational potential,

ih̄
∂

∂t
�(z, t) = − h̄2

2m

∂2

∂z2
�(z, t) + mgz�(z, t) + U0|�(z, t)|2�(z, t), (5)

where |�(z, t)|2 provides the density profile of the BEC, m denotes the atomic mass, g denotes
the gravity acceleration and U0 denotes the inter-atomic interaction strength. In our present
discussion we consider the condensate of non-interacting bosons and we neglect [27, 28] the
effects of inter-atomic interaction U0 on the freely falling condensate. In the BEC, the whole
complex is described by one single wavefunction �(z, t) (a macroscopic wavefunction of the
condensate) exactly as in a single atom, and we can speak of coherent matter in the same way
as coherent light in the case of a laser. To show interference in the quantum TOF signal for
the freely falling BEC, we consider the initial state of the BEC prepared in a Schrödinger-cat
state which is the coherent superposition of two mesoscopically distinguishable states in the
configuration space:

�(z, 0) = N [c1ψ1(z, 0) + c2ψ2(z, 0)], (6)

where

ψ1(z, 0) = 1(
2πσ 2

0

)1/4 exp

(
− z2

4σ 2
0

)
, (7)

ψ2(z, 0) = 1(
2πσ 2

0

)1/4 exp

(
− (z + d)2

4σ 2
0

)
(8)

are the Gaussian wave packets centered around z = 0 and z = −d, respectively, and σ0 is the
initial position spread. A description of the initial 1D wavefunction for two separated BECs
using the Gaussian form (6) has been made, for example, by the authors of [29], where they
consider all the non-interacting bosons are prepared to be condensed in the ground state of the
harmonic trap [3]. For simplicity, we take c1 = c2 = 1/

√
2 which implies that after coherent

splitting of the original BEC, each component has an equal number of atoms. Then the value
of the normalization constant

N = 1
/√

1 + exp
(−d2

/
8σ 2

0

)
. (9)

As we have mentioned, the Schrödinger-cat state of matter was generated for a BEC
represented by superposition of spatially separated states and the superposition was verified
[11] by detecting the quantum mechanical interference (in space) between the localized wave
packets separated by a mesoscopic distance. Under the experimental situations (where the
spatial coherence of the BEC was measured using the interference technique by creating
and recombining two spatially displaced, coherently diffracted copies of an original BEC)
discussed by the authors of [10, 11], the BEC wavefunction can be written as a linear
superposition of spatially separated wave packets [29] which may be inferred as a true
macroscopic Schrödinger cat. Now considering the free fall of the coherently split BEC
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under gravity, we calculate the time evolution of the Schrödinger-cat state (6) according to
equation (5) with U0 = 0, we then obtain

�(z, t) = N√
2

[ψ1(z, t) + ψ2(z, t)], (10)

where

ψ1(z, t) = (
2πs2

t

)−1/4
exp

[
− (

z + 1
2gt2

)2

4stσ0

]
exp

[
−i

(
m

h̄

)(
gtz +

1

6
g2t3

)]
, (11)

and

ψ2(z, t) = (
2πs2

t

)−1/4
exp

[
− (

z + d + 1
2gt2

)2

4stσ0

]
exp

[
−i

(
m

h̄

)(
gtz +

1

6
g2t3

)]
(12)

with

st = σ0
(
1 + ih̄t

/
2mσ 2

0

)
. (13)

The expression for the Schrödinger probability current density corresponding to the time
evolved state �(z, t) (10) is given by

J (z, t) = ih̄

2m

(
�

∂�∗

∂z
− �∗ ∂�

∂z

)
= N 2

2
[J1(z, t) + J2(z, t) + J3(z, t) + J3

∗(z, t)], (14)

where

J1(z, t) =
[

h̄2t

4m2σ 2
0 σ 2

(
z +

1

2
gt2

)
− gt

]
× |ψ1(z, t)|2, (15)

J2(z, t) =
[

h̄2t

4m2σ 2
0 σ 2

(
z + d +

1

2
gt2

)
− gt

]
× |ψ2(z, t)|2, (16)

J3(z, t) + J3
∗(z, t) = 2P12(z, t)(η cos δ − λ sin δ), (17)

where

λ = h̄d

4mσ 2
, (18)

η = h̄2t

8m2σ 2
0 σ 2

(2z + d + gt2) − gt, (19)

and

P12(z, t) = |ψ1(z, t)||ψ2(z, t)| (20)

with the time-dependent position spread given by

σ 2 = st s
∗
t = σ 2

0

(
1 + h̄2t2

/
4m2σ 4

0

)
. (21)

Here the quantity st is defined in equation (13). The oscillatory factor δ in (17), responsible
for the interference effect, is given by

δ = h̄t

8mσ 2
0 σ 2

(d2 + dgt2 + 2zd) = h̄t (d2 + dg t2 + 2zd)

8m
(
σ 4

0 + h̄2t2

4m2

) . (22)
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Now taking the modulus of the quantum probability current density (14), we obtain the
quantum TOF distribution [17–25] at a detector location z = H for the spatially separated
BEC Schrödinger cat falling freely under gravity given by


(t) = |J (z = H, t)|. (23)

Exactly the same expression for quantum TOF distribution can be obtained for a three-
dimensional analysis of the problem by considering the form of the initial wavefunction

�(x, y, z, 0) = N√
2

[ψ1(x, y, z, 0) + ψ2(x, y, z, 0)] , (24)

ψ1(x, y, z, 0) = 1(
2πσ 2

0

)3/4 exp

(
− x2

4σ 2
0

)
exp

(
− y2

4σ 2
0

)
exp

(
− z2

4σ 2
0

)
, (25)

ψ2(x, y, z, 0) = 1(
2πσ 2

0

)3/4 exp

(
− x2

4σ 2
0

)
exp

(
− y2

4σ 2
0

)
exp

(
− (z + d)2

4σ 2
0

)
, (26)

where ψ1(x, y, z, 0) and ψ2(x, y, z, 0) are now three-dimensional Gaussian wave packets
separated along the vertical ẑ-axis, having peaks around the points (0, 0, 0) and (0, 0,−d),

respectively. The value of the normalization constant N remains the same as that in
equation (9). One can then obtain the three-dimensional Schrödinger time evolved
wavefunction under the gravitational potential. The quantum TOF distribution can then
be calculated again using the three-dimensional quantum current. Interpreting again the three-
dimensional continuity equation (4) in terms of the flow of physical probability, one can define
the quantum TOF distribution for the atoms crossing a surface element dS as |J · dS|. It is
important to mention here that the quantum flux density |J · dS| has been identified with the
‘time distribution’ of particles crossing the surface element dS by Daumer et al [30], who
applied Bohm’s model to the scattering problem for a quantum particle in three dimensions.
Hence, the quantum TOF distribution for atoms reaching a finite surface plane S in three
dimensions is given by

Π(t) =
∣∣∣∣ ∫

S

∫
J · dS

∣∣∣∣ =
∣∣∣∣ ∫

S

∫
J · n̂ dS

∣∣∣∣, (27)

where n̂ is the unit vector normal to the surface. The quantum TOF distribution for the atoms
reaching the XY-plane (̂n = −̂z) after a certain height (z = H ) of free fall is then given
by

Π1(t) =
∣∣∣∣ ∫

S

∫
J · n̂ dS

∣∣∣∣ =
∣∣∣∣ ∫

x

∫
y

Jz(x, y, z = H, t) dx dy

∣∣∣∣, (28)

where Jz(x, y, z = H, t) is the z-component of the three-dimensional probability current
density at a fixed height z = H . By evaluating the integral of equation (28), one can
see that Π1(t) is exactly the same as the quantum TOF distribution 
(t) obtained for one-
dimensional analysis (23). To understand more clearly the origin of this interference in TOF,
let us consider the propagation (evolution) of individual wave packets ψ1 and ψ2 under the
gravitational potential. Then one will have two distinct TOF distributions having separate
mean arrival times. This is because the peaks of the component wave packets ψ1 and ψ2

take different times to reach the detector at z = H , since they are spatially separated along the
vertical z-axis, and the interference in TOF arises due to the superposition of these two wave
packets. In this setup, the cross term (interfering term) in the quantum TOF distribution arises
from the relative phase of the component wave packets (ψ1 and ψ2) along the z-direction, as
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only z-components of the component wave packets differ in the time evolution and continue
to develop the relative phase, and this relative phase is not cancelled out when we perform
the integration over the XY-plane. The interference pattern in the quantum TOF distribution
can be detected by using a probe laser, focused in the form of a sheet underneath the falling
BEC atoms in the XY-plane at z = H . When the trapping forces are turned off, the BEC
atoms will fall through the laser probe under the influence of gravity. It is then possible to
detect the fluorescence from the atoms excited by the resonant probe light as they reach the
detection sheet. The fluorescence can be measured as a function of time to determine the TOF
distribution. For this setup, one can also consider a situation where the detection is made in
the YZ-plane (̂n = −̂x) at a fixed x = X. In that case, quantum TOF distribution (say, Π2(t))
can be obtained from the x-component of the three-dimensional current (Jx(x = X, y, z, t))
integrated over the YZ-plane using equation (27). By evaluating that integral, one can see
that there will be no interference in the quantum TOF distribution Π2(t) under this situation.
This is because the interference term in the quantum TOF distribution is wiped out when we
perform the integration over the YZ-plane.

Next, we consider another setup in three dimensions where the superposed wave packets
ψ1(x, y, z, 0) and ψ2(x, y, z, 0) are separated along the horizontal X-axis, having peaks around
the points (0, 0, 0) and (−d, 0, 0), respectively. This situation is analogous to the experimental
setup of [9] where BEC interference was observed in space at a fixed time. For this geometry,
one can again calculate the three-dimensional Schrödinger time evolved wavefunction under
the gravitational potential. The quantum TOF distribution (27) can then be calculated again
using the three-dimensional quantum current. For this setup, we again consider the detection
of the particles at a surface plane (XY-plane with n̂ = −̂z) at z = H . In this case, quantum
TOF distribution (say, Π3(t)) can be obtained from the z-component of the three-dimensional
current integrated over the XY-plane using equation (27). By evaluating that integral, one
can see that there will not be any interference at all in the quantum TOF distribution Π3(t).
The interference term in the quantum TOF distribution is wiped out when we perform the
integration over the XY-plane. This is because for this setup, the individual wave packets ψ1

and ψ2 are not separated along the vertical z-axis, so they will have the same TOF distribution
with the same mean arrival time to reach the detection plane at z = H . Hence, we do not
expect any interference in the quantum TOF distribution detected at the horizontal plane at
z = H when we consider the superposition of the horizontally separated wave packets. The
interference term in the quantum TOF distribution Π3(t), in this case, is wiped out when we
perform the integration over the XY-plane, even though one can observe the interference in
space at a fixed time. For this setup, one can also consider a situation where the detection is
made in the YZ-plane (̂n = −̂x) at a fixed x = X. In that case, quantum TOF distribution
(say, Π4(t)) can be obtained from the x-component of the three-dimensional current integrated
over the YZ-plane using equation (27). For this situation, although we will see the presence
of some interfering terms in the expression of quantum TOF distribution Π4(t), the intensity
to observe this interference will be very low, as only a small fraction of the condensate atoms
will arrive at the detection YZ-plane at x = X due to free expansion (free particle motion)
of the wave packets. One can also check that the quantum TOF distribution Π4(t) will have
exactly the same expression as 
(t) of (23) with g = 0 (no gravity) and with z = H replaced
by x = X. We will show numerically in the next section that gravity plays an important role
in our setup to pull down the vertically separated superposed condensate toward the detection
plane at z = H .

Hence, the only two situations (in our above discussion) where we see the presence of
interference in three dimensions are the quantum TOF distribution Π1(t) and Π4(t). Now,
Π1(t) is exactly the same as 
(t) and Π4(t) is also the same as 
(t) with g = 0 and with
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Figure 2. Quantum TOF distributions 
(t) for the coherently splitted BEC of sodium atoms
(representing the macroscopic Schrödinger cat) falling freely under gravity are plotted for varying
wave-packet separation d. In each curve, time (in s) is plotted along the horizontal direction and
the coherent TOF distribution 
(t) of the BEC Schrödinger cat is plotted (in s−1) along the vertical
axis. The detector is located at a distance z = H = −1 cm and σ0 = 1 μm.

z = H replaced by x = X. So the whole characteristic of the interference pattern in quantum
TOF distribution hinges upon the form of 
(t). In the next section we study numerically
the parameter dependence of the quantum TOF distribution 
(t) and the physical interplay
between these parameters.

3. Numerical results and discussions

Quantum TOF distribution 
(t) of the freely falling atomic BEC Schrödinger cat is plotted
(figure 2) at a detector location z = H = −1 cm with different values of wave-packet
separation d. We see clear signature of interference in the quantum TOF distribution arising
due to the terms J3(z = H, t) and J3

∗(z = H, t) of (17) in the expression for quantum
probability current density (23) and (14). During free fall, the spatially separated wave
packets of the BEC Schrödinger cat overlap or interfere in space and hence they also interfere
in the time of fall showing an interference pattern in the quantum TOF distribution. The
quantum TOF distribution 
(t) may be visualized as a coherent pulse of BEC atoms. The
interference pattern in the quantum TOF signal (figure 2(a)) is very sharp for a typical set
of parameter values, for example, H = −1 cm, d = 50 μm, σ0 = 1 μm, and the pattern
disappears (figure 2(f )) when the separation between the BEC superposed wave packets is
decreased to d = 1 μm for the above-mentioned parameter values. We can see from the
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Figure 3. Quantum TOF distributions 
(t) for the coherently splitted BEC of sodium atoms
(representing the macroscopic Schrödinger cat) falling freely under gravity are plotted for varying
atomic masses. In each curve, time (in s) is plotted along the horizontal direction and the TOF
signal 
(t) is plotted (in s−1) along the vertical axis. The detector is located at z = H = −1 cm
with d = 50 μm and σ0 = 1 μm.

oscillatory factor δ (22) in (17) that the number of oscillations and hence the number of fringes
increases in the TOF distribution 
(t) (23) as one increases the separation d. The interference
effect arises mainly because of two factors: one is the temporal overlap P12(z = H, t) (20)
and the other is the oscillatory factor δ. When d is very small, the overlap P12(z = H, t)

is very high, but the oscillatory factor δ becomes small. As a consequence, the oscillation
frequency is too slow or the oscillation period is too large, and we do not see any oscillatory
effect in the temporal overlap region of the wave packets. The number of oscillations increases
as one increases d, but again after a certain value (d > 400 μm) of separation there will be no
interference as the overlap P12(z = H, t) becomes very small in that case.

From figure 3, we see that the interference pattern in the quantum TOF signal gradually
disappears as one increases the mass m of the atoms. Figure 4 shows the quantum TOF
distribution for different values of wave-packet width from σ0 = 1 μm to σ0 = 6 μm. It
is clear from figure 4 that the number of fringes and the contrast of interference patterns in
quantum TOF distribution decreases as one increases the value of the initial widths (σ0) of the
wave packets. Nevertheless, it is possible to see the interference for a larger value of σ0. For
example, if one chooses σ0 = 10 μm, then to observe a good interference pattern (with good
contrast and having a considerable number of fringes) in 
(t), the separation d needs to be
considered in the range of 50 μm to 250 μm, with the detector placed at a longer distance
(H = −100 cm) for a fixed mass of sodium atoms.

The interference in 
(t) is sensitive to the parameters σ0 and the atomic mass m, the
detector location H and the separation d. We repeat here that the interference in 
(t) arises
mainly because of the temporal overlap P12(z = H, t) (20) and the oscillatory factor δ (22).
To increase the temporal overlap P12(z = H, t), one has to find the condition under which the
spreading of the wave packet increases: small σ0, lighter mass atoms and a distant detector
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Figure 4. Quantum TOF distributions 
(t) for the coherently splitted BEC of sodium atoms
(representing the macroscopic Schrödinger cat) falling freely under gravity are plotted for varying
wave packet width σ0. In each curve, time (in s) is plotted along the horizontal direction and the
coherent TOF distribution 
(t) of the BEC Schrödinger cat is plotted (in s−1) along the vertical
axis. The detector is located at a distance z = H = −1 cm and d = 50 μm.

location (large H) will be helpful in this regard to enhance this effect. The oscillatory factor
δ can be increased either by reducing the value of σ0, or by increasing the parameters d and
H. Actually, when one considers higher values of the parameter σ0, then the temporal overlap
P12(z = H, t) and the oscillatory factor δ both decrease. This is because for larger values
of the parameters σ0 (or mass m), the spreading effect (21) and hence the temporal overlap
P12(z = H, t) becomes small. As a result, the wave packets try to localize (in time as well as
in space) more strongly causing the interference effect to be small. Also, for higher values of
σ0, the oscillatory factor δ will be too small due to the presence of σ 4

0 in the denominator of
δ (22). Then one has to allow the BEC to travel a longer distance (by increasing H) to develop
some temporal overlap of the wave packets, and also increasing H helps us to increase δ

(22). For higher values of σ0, the parameter δ should also be increased by increasing the
value of the separation d, keeping in mind that there remains a considerable temporal overlap
P12(z = H, t). The temporal overlap gets reduced if one increases the separation d too much.
So, even if there is a delicate choice of the parameters, one can observe the TOF interference
for a wide range of parameter values.

It is significant to mention here that gravity plays an important role in our setup to observe
the interference in the TOF distribution. In figure 5 we plot the time distribution 
(t) for
g = 0 (no gravity) and compare it with figure 2(d) where we plot 
(t) in the presence of
gravity with the parameter values the same as that of figure 5. We see that the magnitude
of 
(t) (in the absence of gravity) is roughly 105 times smaller than that obtained for the
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Figure 5. Quantum TOF distribution 
(t) for the coherently splitted BEC of sodium atoms
(representing the macroscopic Schrödinger cat) is plotted in the absence of gravity (g = 0). Time
(in s) is plotted along the horizontal direction and the coherent TOF distribution 
(t) of the BEC
Schrödinger cat is plotted (in s−1) along the vertical axis. The detector is located at a distance
z = H = −1 cm with σ0 = 1 μm and d = 20 μm.

gravitational free fall case for z = H = −1 cm. The reason for this is that the magnitudes
of J1(z = H, t) and J2(z = H, t) become very small (roughly 105 times) in the absence
of gravity. This magnitude becomes 106 times smaller if we consider the detector location
at z = −10 cm. Actually, in the absence of gravity, there will be free particle motion and
expansion of the wave packets in every direction. So, if one tries to observe the interference
in the quantum TOF distribution in the absence of gravity, the intensity of that interference
pattern will be too faint to observe as only a small fraction of the condensate atoms will arrive
at the detector. Hence, in our setup, gravity plays an important role which helps to pull down
the condensate towards the detection plane.

4. Summary and conclusion

To summarize, in this work we propose a scheme to experimentally observe matter-wave
interference in the time domain, specifically in the TOF (arrival time) distribution using atomic
BEC. This experimentally testable scheme has the potential to empirically resolve ambiguities
inherent in the theoretical formulations of the quantum arrival time distribution. Here we use
the probability current density approach to calculate the quantum TOF distributions for an
atomic BEC Schrödinger cat represented by superposition of macroscopically separated wave
packets in space. Our definition of the quantum TOF distribution in terms of the modulus of
the probability current density is particularly motivated from the equation of continuity, and
other physical considerations discussed in the literature [17–25]. This approach also provides
a proper classical limit, as the interference and hence the coherence in the quantum TOF
signal disappears in the large-mass limit. We repeat that there is no classical analogue of this
TOF distribution 
(t) and this is purely a quantum distribution where we see the matter-wave
interference in the quantum TOF signal. Hence, it will be interesting to see if our prediction
of interference in the time domain (TOF distribution) can be verified in actual experiments
using modern interferometry techniques and sophisticated TOF methods.

12



J. Phys. A: Math. Theor. 42 (2009) 385303 Md M Ali and H-S Goan

Acknowledgments

We would like to acknowledge support from the National Science Council, Taiwan, under grant
no 97-2112-M-002-012-MY3, support from the Frontier and Innovative Research Program of
the National Taiwan University under grants no 97R0066-65 and no 97R0066-67, and support
from the focus group program of the National Center for Theoretical Sciences, Taiwan. HSG
is grateful to the National Center for High-Performance Computing, Taiwan, for computer
time and facilities.

References

[1] Metcalf H J and Straten P V D Laser Cooling and Trapping (New York: Springer)
[2] Yavin I et al 2002 Am. J. Phys. 70 149

Brzozowski T M et al 2002 J. Opt. B: Quantum Semiclass. Opt. 4 62
[3] Pitaevskii L and Stringari S 2004 Bose-Einstein Condensation (Oxford: Oxford University Press)

Dalfovo F et al 1999 Rev. Mod. Phys. 71 463
[4] Weiss D S et al 1989 J. Opt. Soc. Am. B 6 2072

Lett P D et al 1989 J. Opt. Soc. Am. B 6 2084
[5] Gomes J V et al 2006 Phys. Rev. A 74 053607
[6] Butler J M et al 1996 Anal. Chem. 68 3283

Griffin T J et al 1997 Nat. Biotechnol. 15 1368
Moskovets E et al 1999 Rapid Commun. Mass Spectrom. 13 2244

[7] Philips W D et al 1987 Scientific American March, pp 50–6
Salomon C et al 1990 Europhys. Lett. 12 683

[8] Bassi D et al 1988 Atomic and Molecular Beam Methods ed G Scoles (Oxford: Oxford University Press)
Grupen C 1996 Particle Detectors (Cambridge: Cambridge University Press)
Gross J H 2002 Mass Spectrometry: A Text Book (Berlin: Springer)

[9] Andrews M R et al 1997 Science 275 637
[10] Kozuma M et al 1999 Phys. Rev. Lett. 82 871
[11] Hagley E W et al 1999 Phys. Rev. Lett. 83 3112

Simsarian J E et al 2000 Phys. Rev. Lett. 85 2040
[12] Muga J G, Mayato R S and Egusquiza I L (ed) 2002 Time in Quantum Mechanics (Berlin: Springer)
[13] Hauge E H and Stovneng J A 1989 Rev. Mod. Phys. 61 917

Landauer R and Martin Th 1994 Rev. Mod. Phys. 66 217
Olkhovsky V S and Recami E 1992 Phys. Rep. 214 339

[14] Kijowski J 1974 Rep. Math. Phys. 6 351
[15] Grot N et al 1996 Phys. Rev. A 54 4676

Delgado V et al 1997 Phys. Rev. A 56 3425
[16] Aharanov Y et al 1998 Phys. Rev. A 57 4130

Damborenea J A et al 2002 Phys. Rev. A 66 052104
[17] Muga J G and Leavens C R 2000 Phys. Rep. 338 353
[18] Dumont R S et al 1993 Phys. Rev. A 47 85

Leavens C R 1993 Phys. Lett. A 178 27
Muga J G et al 1995 Ann. Phys. 240 351
Challinor A et al 1997 Phys. Lett. A 227 143
Delgado V 1999 Phys. Rev. A 59 1010

[19] Pan A K et al 2006 Phys. Lett. A 352 296
[20] Finkelstein J 1998 Phys. Rev. A 59 3218
[21] McKinnon W R et al 1995 Phys. Rev. A 51 2748

Leavens C R 1998 Phys. Rev. A 58 840
Mousavi S V et al 2008 J. Phys. A: Math. Theor. 41 375304

[22] Ali Md M et al 2007 Phys. Rev. A 75 042110
[23] Ali Md M et al 2003 Phys. Rev. A 68 042105
[24] Ali Md M et al 2006 Found. Phys. Lett. 19 723
[25] Ali Md M et al 2006 Class. Quantum Grav. 23 6493

13

http://dx.doi.org/10.1119/1.1424266
http://dx.doi.org/10.1088/1464-4266/4/1/310
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1364/JOSAB.6.002072
http://dx.doi.org/10.1364/JOSAB.6.002084
http://dx.doi.org/10.1103/PhysRevA.74.053607
http://dx.doi.org/10.1021/ac960317a
http://dx.doi.org/10.1038/nbt1297-1368
http://dx.doi.org/10.1002/(SICI)1097-0231(19991130)13:22<2244::AID-RCM781>3.0.CO;2-H
http://dx.doi.org/10.1209/0295-5075/12/8/003
http://dx.doi.org/10.1126/science.275.5300.637
http://dx.doi.org/10.1103/PhysRevLett.82.871
http://dx.doi.org/10.1103/PhysRevLett.83.3112
http://dx.doi.org/10.1103/PhysRevLett.85.2040
http://dx.doi.org/10.1103/RevModPhys.61.917
http://dx.doi.org/10.1103/RevModPhys.66.217
http://dx.doi.org/10.1016/0370-1573(92)90015-R
http://dx.doi.org/10.1103/PhysRevA.54.4676
http://dx.doi.org/10.1103/PhysRevA.56.3425
http://dx.doi.org/10.1103/PhysRevA.57.4130
http://dx.doi.org/10.1103/PhysRevA.66.052104
http://dx.doi.org/10.1016/S0370-1573(00)00047-8
http://dx.doi.org/10.1103/PhysRevA.47.85
http://dx.doi.org/10.1016/0375-9601(93)90722-C
http://dx.doi.org/10.1006/aphy.1995.1048
http://dx.doi.org/10.1016/S0375-9601(97)00041-8
http://dx.doi.org/10.1103/PhysRevA.59.1010
http://dx.doi.org/10.1016/j.physleta.2005.12.002
http://dx.doi.org/10.1103/PhysRevA.59.3218
http://dx.doi.org/10.1103/PhysRevA.51.2748
http://dx.doi.org/10.1103/PhysRevA.58.840
http://dx.doi.org/10.1088/1751-8113/41/37/375304
http://dx.doi.org/10.1103/PhysRevA.75.042110
http://dx.doi.org/10.1103/PhysRevA.68.042105
http://dx.doi.org/10.1007/s10702-006-1060-z
http://dx.doi.org/10.1088/0264-9381/23/22/024


J. Phys. A: Math. Theor. 42 (2009) 385303 Md M Ali and H-S Goan

[26] Holland P 1999 Phys. Rev. A 60 4326
Holland P 2003 Ann. Phys. (Leipzig) 12 446
Holland P 2003 Phys. Rev. A 67 062105
Struyve W et al 2004 Phys. Lett. A 322 84

[27] Tsurumi T and Wadati M 2001 J. Phys. Soc. Japan 70 60
Tsurumi T and Wadati M 2002 J. Phys. Soc. Japan 71 1044

[28] Gerbier F et al 2001 Phys. Rev. Lett. 86 4729
Sinner A et al 2006 Phys. Rev. A 74 023608

[29] Robinett R W 2006 Phys. Scr. 73 681
Wallis H et al 1997 Phys. Rev. A 55 2109

[30] Leavens C R in [12]
Daumer M 1996 Bohmian Mechanics and Quantum Theory: An Appraisal ed J T Cushing, A Fine

and S Goldstein (Dordrecht: Kluwer) pp 87–98

14

http://dx.doi.org/10.1103/PhysRevA.60.4326
http://dx.doi.org/10.1002/andp.200310022
http://dx.doi.org/10.1103/PhysRevA.67.062105
http://dx.doi.org/10.1016/j.physleta.2004.01.010
http://dx.doi.org/10.1143/JPSJ.70.60
http://dx.doi.org/10.1143/JPSJ.71.1044
http://dx.doi.org/10.1103/PhysRevLett.86.4729
http://dx.doi.org/10.1103/PhysRevA.74.023608
http://dx.doi.org/10.1088/0031-8949/73/6/025
http://dx.doi.org/10.1103/PhysRevA.55.2109

	1. Introduction
	2. Interference in the quantum time-of-flight distribution for the Bose--Einstein condensate
	3. Numerical results and discussions
	4. Summary and conclusion
	Acknowledgments
	References

